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H-Bases I: The Foundation

H. Michael M61ler and Thomas Sauer

Abstract. The H-basis concept allows an investigation of multivariate
polynomial spaces degree by degree. In this paper, we mention its con-
nection to the Grbbner basis concept, characterize H-bases, show how to
construct them, and present a procedure for simplifying polynomials to
their normal forms. Applications will be given in [8].

§1. Introduction

We consider H, the ring of polynomials in x1 ,..., x,, with coefficients from an
infinite field 1K, i.e. H = ]K[xl,..., x,], and the subsets H1 d of all polynomials
of degree at most d. In many applications, one is interested in getting a basis
or a generating set for the linear vector space I n ld, where I CI H is an
ideal. Having an H-basis {fl, . . . , f,} for I, then the set of all pi • fi with
Pi E Hd-deg(fj), i = 1,... , s, generates In Hd as a linear vector space. Thus
the H-basis concept is a tool for transforming a non-linear problem in H into
a problem in one (or in a series of) finite dimensional linear space(s) Id.

H-bases were introduced first by Macaulay [4]. His original motivation
was the transformation of systems of polynomial equations into simpler ones.
The power of this concept was not really understood, presumably because
of the lack of facilities for symbolic computations. When Computer Algebra
Systems came up, Grdbner bases (G-bases for short) were used instead of
H-bases. These bases, originally invented by Buchberger [2] for computing
multiplication tables for factor rings, are now also applied for simplifying
some problems in Numerical Analysis, see [5].

The G-bases give generating systems not to I f Hd but to I f .Fi, where
aci C H is a linear vector space of dimension i, and ai C Fa+I for all i and
II = Uj>OYj. This finer decomposition has some drawbacks. For instance if
an ideal is invariant under an affine symmetry group, its G-bases are typically
not invariant. Since the spaces I 1 d are invariant under affine symmetry groups,
H-bases do not destroy such symmetries.

Many of the problems in applications which can be solved by Grdbner
techniques can also be treated successfully with H-bases. In [7] we gave an
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overview of such problems. In the present paper, we describe briefly the
underlying concept of grading rings, which leads to G- and H-bases, and
present some properties characterizing H-bases. In contrast to [7], where we
only gave a class of examples of H-bases, we present here the construction of
an H-basis for zero-dimensional ideals I. A useful tool for our procedure is
the so called normal form mapping NF, presented in Section 4, which projects
II orthogonally to the ideal I provided an H-basis of I is given. In [8] we show
how these normal forms can be applied in numerical applications.

§2. H-bases and G-bases

In ring theory, rings can be graded by an ordered monoid, i.e. by an abelian
semigroup F with addition + and total ordering -< satisfying

"71 •< 72 =: 70 + 71-< •YO +•72, V7O, "1, 2 IF.

There are two major examples for grading H by an ordered monoid F:

$, = (@ H(Fr), II(r)r1(r) c _ Vyl,' 2 rF.

-Y~r 7 71 72 - '71+12V7,2EF

"yEF

The first one is the H-grading with F := IN,

n({r) := 1p C n I P homogeneous of order -y}.

The ordering of r = IN, is the natural one. The second example for gradings
is the G-grading, where F := N' and

1-1(1) {cxY1 -Y I c C K}.

F = N' is ordered by an admissible term ordering,

O-<i, i-<j •i+k- j+k.

Since the decomposition of H into the sets H(r) is a direct sum, every f C l
has a unique representation f = E f.7. The maximal y with fy :A 0 is called

the maximal part of f 5 0, M(r)(f) for short. It is also called the maximal form
in the H-case, or leading monomial in the G-case. In the G-case, M(r)(f) =

lc(f)lt(f), where lc(f) E 1K is the leading coefficient and lt(f) = X " n

the leading term. The maximal form of f : 0 is also denoted by MH(f).

Definition 1. {P.,... ,Pm} C I is called a basis of an ideal I C II, briefly
I = (pi,... ,Pm), ifV p E I

m

]gl,...,gm ElH : P=Y gkPk.

k=1
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It is also a G-basis or H-basis resp. if gi,..., g, satisfy in addition

max lt(gk)lt(pk) = lt(p) (G - basis),
k=1

or max deg(gkPk) = deg(p) (H - basis).k=1

Theorem 1. Let I = (Pi,...,Pm). Then {Pi,...,Pm} is an H-basis (G-
basis resp.) if and only if the least ideal containing all MH(f), 0 :A f E I
(or all lt(f), 0 04 f E I resp.) is generated by MH(p1),..., MH(pm) (or by
It(pi),..., t(pm) resp.).

This theorem, which holds mutatis mutandis for arbitrary graded rings,
is proved for instance in [6]. An immediate consequence of it is that every
ideal 1 # (0) has an H- and a G-basis.

G-bases are now a standard tool in Computer Algebra. They are covered
by nearly all textbooks, and are contained in almost all Computer Algebra
Systems. The grading by one-dimensional linear spaces (r) often reduces the

computation to solving a series of one-dimensional problems. On the other
hand, the construction of G-bases is often difficult or even impossible because
of the high complexity of Buchberger's algorithm for computing G-bases. In
addition, in many applications the G-bases allows only little insight into the
structure of a solution by the artificial ordering term by term.

§3. Characterization of H-bases and Normal Forms

Macaulay introduced H-bases using homogenizations and dehomogenizations
of polynomials. The name H-basis originates from the first letter of homoge-
nization.

Definition 2. Let f E IK[xl,... ,x,] have degree d,

d

f = Zfi fA homogeneous of degree i, fd # 0.
i=O

Then introducing a new variable x 0 , the homogenization off is a homogeneous
degree d polynomial in K [xo, x1,.. xn] ,

d
0d-if,¢(f) Z=x0fi

i=O

A homogeneous F c ]K[xo, X,... ,xn] can be dehomogenized to an f E H by
Xo = 1.

For more details on homogenizations and their connection to projective
coordinates, we refer to [3].
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Theorem 2. (Macaulay [4]). Let I = (hi,..., h,). Then the following state-
ments are equivalent

1) The least ideal containing all 4(h), 0 5 h c I, is (D(h4), ... , ))

2) xoF E (4(h 1),... ,(h.)) •: F E (h),...,(h)).

3) {hi,... ,hs} is an H-basis of I.

The power of the G-basis concept is mainly based on the possibility of
reducing a polynomial to a simpler one by subtracting suitable multiples of
elements of the G-basis. A consequent application of this reduction strategy
gives the so called normal form, in a sense the simplest polynomial obtainable
by the reductions. We translated this technique to H-bases in [7], and give
here for consistency a short r~sum6 of the main results.

Definition 3. We denote by H(dH) the space of all homogeneous degree d

polynomials for d £ IN, and H(H) :=---{0} for d < 0. Let h...... , hs E H. Then

we define a finite dimensional linear subspace of H(H) by

s

Vd(hl, :,h,) = {f gMH(hi) gj E rH-Hd(hi).
i= 1

Analogously for an ideal I C H,

Vd(I) := {MH(p) I p 1 I, deg(p) = d} U {0}.

We introduce an inner product ( . , . ) in H, for instance, by the inner
product of the (weighted) coefficient vectors, or by a strictly positive linear
functional J and (f,g) := J(f. g) if IK C R or := J(fg) if 1K = C. Then we

can define orthogonal complements Wd(hl,..., h,) and Wd(I) in 7(H). Hence

Vd(hl,..., hs) D Wd(hl,... h,) = H(H) and Vd(I) D Wd(I) = H(dH
d d

Let us consider a polynomial f of degree d. Then

Mg(f) C Vd(hl,.. ., h.,) (D Wd(hi,.. ., h,,).

Let Wd denote its natural projection on Wd(hl,... ,h,). This homogeneous
polynomial can be computed by solving a finite linear system of equations be-
cause H(H) has a finite dimension. Hence there are homogeneous polynomials
gi, ... , g, such that

f=wd + gihi -+ f, gi E d-deg(hi)' fl E Hdl.
i=1

We say f reduces to wd+fl modulo {hi,..., h,} and call f, then the remainder
of f.
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In the reduction modulo {hl,. . ., h,} the degree of the remainder fi is less
than deg(f). Hence this reduction can be applied recursively reducing fi-1
constructively to Wd+l-i + fi modulo .hi,..., h8 } for i = 1,..., d + 1 starting
with f = fo E Ild and terminating with fd+l = 0, because the constant fd
is either in VO(hl,..., h,) or in W0(hl,..., h,). Combining these reductions
modulo {hi,..., h8}, one obtains for f

d d s
cI (H)

i --- i = O j = 1

Then EId0 wi is uniquely determined by f, by {hi,..., h,}, and by the un-
derlying inner product.

Definition 4. Let hl,...,h, E H. We say f E Hd reduces fully modulo
{hi,... ,h,} to Zi=0 w if every wi e Wi(hl,..., h,) is constructed as de-
scribed above. Ed=0 wj is called the normal form of f modulo {hj,..., h,
for short

dNF(f, jhj,... h,}s)) 1: w
j=0

If .h.,..., hj} is not an H-basis of I := (hl,..., h,), then MH(f) is not
necessarily contained in Vdeg(f)(hl,..., h,), although f E I. This means, that
eventually the first homogeneous polynomial Wd is not 0 if f E I. Hence at
most if {hi,..., h,} is an H-basis, then NF(f, {hl,..., hj}) = 0. In fact, as
quoted in [7] but shown already in [9], {hl,..., h,} is an H-basis if and only
if NF(f, {hi,..., h,}) = 0 for every f E (hl,..., h,).

Another characterization of H-bases given in [7] is as follows.

Theorem 3. Let I be an ideal and hl,..., h, E I. .h.,..., hj} is an H-basis
of I if, and only if, for all d E VN,

Vd(I) = Vd(hl,..., hS).

§4. On the Construction of H-bases

Macaulay proposed in [4] a procedure for computing H-bases of ideals given by
a basis. However, his description was only by an example. He claimed "This
procedure is a general one". But he needs in his example the computation of
certain modules of syzygies. These can be constructed only in special cases
or by computing first a G-basis and then applying techniques as in [1].

On the other hand, if an admissible term ordering -• is compatible with
degrees,

deg(0' .... < deg(xo'.. .) X11 ... -n X01 .. ,
then a G-basis with respect to -< is also an H-basis. Hence Buchberger's
algorithm for computing G-bases also serves for computing H-bases. This
seems a more direct access than via syzygies. However, if one wants to use
H-bases instead of G-bases, this way is still a detour.
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In case the number n of variables coincides with the number of given
polynomials, then there is an easy test for H-bases as proved in [7].

Theorem 4. Let hl,... , hn, be n polynomials such that their maximal forms
MH(h1),... , MH(hn) have only the point (0,... , 0) as common zero. Then
{h 1 , ... , h,, } is an H-basis.

For an arbitrary zero-dimensional ideal, i.e. for an ideal I such that the
polynomials in I ( equivalently: the polynomials in an arbitrary basis of I)
have only a finite number of common zeros in Rn, R the algebraic closure of
IK, see [3], we present here a procedure which computes an H-basis from a
given basis.

Procedure for computing H-bases.
In : 7R,, a finite polynomial set generating a zero-dimensional ideal I.
Out : 7R, an H-basis of I.
Start: 7 := 1-, d = 0.
Loop: Check the finite dimensional linear vector space

Vd(R) := {E ghMH(h) I ghMH(h) d
hET-

for linear dependencies. If EhE ghMH(h) = 0, then compute p
NF(ZhER ghh,7-)). If p : 0, then enlarge -tH by p, and modify con-
sequently V0(7-),...,Vd-l(7-H). Lower d to the least k where Vk(7-i) is
changed and go to Loop. If for no linear dependency such p is nonzero,

then then enlarge d by 1. If now Vd(7-1) - H(H) holds true, then return
7- otherwise go to Loop.

This informal description can be extended easily to a correct algorithm. One
has to observe that the checking of Vd(7H) for linear dependencies needs a basis
of the nullspace

(H) x ... x(H)
{(gi,...,g) e d-dg(h X d-g(h,) IZgiMIi(hi) = 0},

where 'H = {hl,...,h,}. If for every basis element (g9,...,g.g) the normal
form of == gihi is 0, then it holds for every element of the nullspace, i.e.
for every dependency. As a byproduct of the basis computation one obtains
dimVd('H). Then the test Vd(H-) = H(H) reduces to a comparison of the

dimensions because of Vd(7-() c
For proving correctness and termination, we consider first f := -hEH ghh

with ghMH(h) E 1 1(H) for all h E R. If NF(f,-) = 0, then especially MH(f) E
Vk(H-) for a k < d, and hence

MH(f) E (MH(hl),..., MH(h,)), where R = {hi,..., h5 }.

In case p := NF(f, R) 54 0 either MH(f) 5 MH(p) holds, i.e. again

MH(f) E (MH(hl),...,MH(h , )),
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or MH(f) = MH(p) holds, i.e.

MH(f) C (MH(hl),...,MH(h.),MH(p)).

Therefore, if in the procedure d is increased by 1 (and W- is updated), then for
every 0 0 EhE1 ghh C I, deg(gh) + deg(h) < d the relation

MH( E ghh) E (MH(hl),.. ., MH(hS))
h EH

holds where again 7- =: {hl,. . . , h,}. This is our inductive hypothesis.
The ideal I has an H-basis, say { wP,... , m}. -H is a basis of I. Hence

every Si has a representation oj = E'=, gijhj, gij E H. If the inductive
hypothesis holds for d, then one obtains at least for d > M :=maxijdeg(gijhj)
that

MHg(i) E (MH(hl),... , MH(hs)), i = 1,.... m.

Hence for those d Vd(p1,...,Wm) _ Vd(h). But Vd(Wj,...,Sm) = Vd(I),
since {.1,..., Wm} is an H-basis of I. Therefore Vd(1-) = Vd(I) for d > M.
By the inductive hypothesis, also Vk(H-i) = Vk(I) holds for k < M. Hence 7-H
is an H-basis of I if we arrived at a d > M in the procedure.

The ideal I has dimension 0. Then there is a D such that Vd(I) = II(H)
for all d > D, see for instance [3, Ch 9.4,Prop.6] and [3, Ch 5.3,Thm.6].

Hence for d > max{D, M} one has Vd(7-H) = H(H). Thus in the course of the

procedure, one arrives once, not knowing M, at a do with Vdo(H-i) = H1 (H)
do

Then also Vk(?i) = 1(H) for all k > do. Therefore, for every polynomial f E I
with

Sf gi i, 9 E I(H)Egihi gi Ek-geg(hi)
i=1

the assumption MH(f) V (MH(h1),..., MH(h,)) leads to deg(MH(f))< do .
But then the inductive hypothesis gives a contradiction. Therefore the proce-
dure gives no new p # 0 enlarging the set 7X. This ensures termination.

An implementation of an algorithm based on this procedure and a com-
plexity analysis is still a work under progress.
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